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ABSTRACT
Contrastive learning with Transformer-based sequence encoder
has gained predominance for sequential recommendation. It maxi-
mizes the agreements between paired sequence augmentations that
share similar semantics. However, existing contrastive learning
approaches in sequential recommendation mainly center upon left-
to-right unidirectional Transformers as base encoders, which are
suboptimal for sequential recommendation because user behaviors
may not be a rigid left-to-right sequence. To tackle that, we propose
a novel framework named Contrastive learning with Bidirectional
Transformers for sequential recommendation (CBiT). Specifically,
we first apply the slide window technique for long user sequences
in bidirectional Transformers, which allows for a more fine-grained
division of user sequences. Then we combine the cloze task mask
and the dropout mask to generate high-quality positive samples and
perform multi-pair contrastive learning, which demonstrates better
performance and adaptability compared with the normal one-pair
contrastive learning. Moreover, we introduce a novel dynamic loss
reweighting strategy to balance between the cloze task loss and
the contrastive loss. Experiment results on three public benchmark
datasets show that our model outperforms state-of-the-art models
for sequential recommendation. Our code is available at this link:
https://github.com/hw-du/CBiT/tree/master.
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1 INTRODUCTION
Sequential recommendation system aims to model the dynamic
preferences in users’ historical interactions and predicts the sub-
sequent items that users will probably interact with in the future.
Traditional methods [18, 36, 37] are based on the Markov Chain
(MC) assumption that the next item only depends on previous items.
With the advancements in deep learning in the recent past, various
models employ deep neural networks, such as Convolutional Neu-
ral Networks (CNNs) [40] and Recurrent Neural Networks (RNNs)
[19, 20], as base sequence encoders to generate hidden representa-
tions of sequences. The limitations are that CNNs are only effective
in capturing local features [40] while RNNs display poor parallelism
capacity [2]. Recently, Transformers [41] have emerged as a power-
ful architecture in various research fields. Different from CNNs or
RNNs, the self-attention mechanism in Transformers can automati-
cally assign attention weights to items at different positions, which
is capable of capturing both global and local features and can also
be effectively trained through parallel computation. Thus, various
sequential models [21, 28, 34, 39, 45, 47] adopt Transformers as
sequence encoder to capture item correlations via the self-attention
mechanism and obtain high-quality sequence representations.
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Despite effectiveness, current Transformer-based models suffer
from data sparsity and interaction noise, owing to the extreme spar-
sity of interactions. To alleviate these issues, contrastive learning
has been introduced to Transformer-based models for sequential
recommendation. As a paradigm of self-supervised learning, con-
trastive learning demonstrates strong ability in generating high-
quality embedding representations from unlabelled data, via maxi-
mizing the agreements between positive samples and pushing neg-
ative samples apart from positive samples. For example, CL4SRec
[45] and CoSeRec [28] construct positive samples from an origi-
nal sequence through data augmentations to perform contrastive
learning. Duorec [34] constructs positive samples via unsupervised
dropout and supervised positive sampling. Such contrastive para-
digm can enhance the discriminating ability of sequence encoders
as well as improve robustness and noise resistance.

However, all existing works [28, 34, 45] devise contrastive se-
quential recommendations based on unidirectional Transformers,
neglecting the superiority of bidirectional Transformers. The lim-
itation is that unidirectional Transformers can only consider in-
formation from left to right. Yet in the real world, user behaviors
may not be a rigid left-to-right sequence. Various external factors
[8] disorganize the original sequence order, and skip behaviors
[40] also exist in sequential patterns. By comparison, the atten-
tion mechanism in the bidirectional Transformers models items
from both sides and incorporates contextual information from both
directions, resulting in better performance [39] than its unidirec-
tional counterpart such as SASRec [21]. We argue that contrastive
learning based on such left-to-right unidirectional Transformers are
suboptimal for sequential recommendation because user behaviors
may not be a rigid left-to-right sequence, so it is meaningful to
devise contrastive learning frameworks based on the architecture
of bidirectional Transformers.

In fact, it is not trivial to introduce the contrastive paradigm into
the architecture of bidirectional Transformers. The characteristics
of bidirectional Transformers and contrastive learning need to be
carefully examined to achieve a balance, which requires us to an-
swer the following questions: (1) How to choose an augmentation
strategy for contrastive learning? A simple answer is to explicitly
apply data augmentation similar to [28, 45], such as masking items.
Yet such data augmentation strategy collides with the training objec-
tive of bidirectional Transformers—the cloze task, which also masks
items. (2) How to construct reasonable positive samples for contrastive
learning? It is hard to find a reasonable self-supervision signal that
could indicate whether selected samples are semantically similar
or dissimilar. Even if a pair of data-augmented samples stem from
the same original sequence, considering them as a pair of positive
samples may still be unreasonable because data augmentation may
corrupt the original semantics.

To tackle the challenges mentioned above, we devise contrastive
learning approaches suitable for the properties of bidirectional
Transformers and propose a novel framework named Contrastive
learning with Bidirectional Transformers for sequential recom-
mendation (CBiT). Specifically, we first apply the slide window
technique for long sequences in bidirectional Transformers to re-
solve the restriction of maximum sequence length, which preserves
all the training data and helps bidirectional Transformers capture
more fine-grained features. Then we combine both the cloze task

mask and the dropout mask to generate a collection of positive sam-
ples and extrapolate the normal one-pair contrastive learning to
multi-pair instances. Compared with one-pair contrastive learning,
multi-pair contrastive learning not only provides harder samples
which benefits high-order feature extraction, but also alleviates the
negative impact of false negative samples by incorporating more
positive samples. Moreover, we design a dynamic loss reweighting
strategy, which dynamically calculates the proportion of the con-
trastive loss, to speed up convergence and further improve perfor-
mance. Extensive experiments on three public benchmark datasets
confirm the effectiveness of our framework. The contributions of
our paper can be summarized as follows:
• We propose a novel framework of contrastive learning based on
bidirectional Transformers in sequential recommendation. To the
best of our knowledge, we are the first to introduce contrastive
learning under the architecture of bidirectional Transformers in
sequential recommendation.

• We use both the cloze taskmask and the dropout mask as augmen-
tations to generate positive samples and extrapolate the normal
one-pair contrastive learning to multi-pair instances. We also
propose a novel dynamic loss reweighting strategy to smooth
multi-pair contrastive loss.

• We conduct extensive experiments on three public benchmark
datasets to verify the effectiveness of our approach.

2 RELATEDWORK
2.1 Sequential Recommendation
Early works on sequential recommendation employ Markov Chains
(MCs) to capture the dynamic transition of user interactions, such
as MDP [37], FPMC [36] and Fossil [18]. Later, RNNs such as Gated
Recurrent Unit (GRU) [7] are introduced into sequential recommen-
dation to model user interactions [19, 20, 35]. CNNs are also proved
effective in modeling short-term user interests [40]. Besides, other
algorithms such as reinforcement learning [13, 14, 46] have also
shown promising results in sequential recommendation.

Recently, the success of Transformers [41] in natural language
processing [9] and computer vision [10] brings focus on the pos-
sibility of using Transformers as sequence encoders in sequential
recommendation. SASRec [21] employs unidirectional Transform-
ers fulfill the next-item prediction task in sequential recommenda-
tion. BERT4Rec [39] improves SASRec by using bidirectional Trans-
formers and a cloze task in sequential recommendation. LSSA [47]
proposes a long- and short-term self-attention network to consider
both long-term preferences and sequential dynamics. SR-GNN [44]
and GC-SAN [48] combine Graph Neural Networks (GNNs) with
self-attention networks to capture both local and global transitions.
FDSA [49] and S3-Rec [50] employ Transformers to fuse context
data into sequential recommendation. CL4SRec [45], CoSeRec [28]
and DuoRec [34] add additional contrastive learning modules to
Transformers to enhance the quality of sequence representations.

2.2 Self-Supervised Learning
Self-supervised learning aims to extract contextual features from
unlabeled data [3]. Advancements in various research fields, includ-
ing natural language processing [11, 12, 24, 25], computer vision
[4–6, 16] and recommender systems [26, 28, 33, 34, 39, 45, 50] have
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demonstrated the potential of self-supervised methods in capturing
complex features and obtaining high-quality representations.

Self-supervised learning can be classified into two broad cate-
gories, i.e., the generative paradigm and the contrastive paradigm
[27]. For example, the cloze task in BERT4Rec [39] is a generative
method where the model learns to predict part of its input. Many
works have also confirmed the effectiveness of the contrastive
paradigm in sequential recommendation [28, 34, 45, 50]. S3-Rec
[50] adopts a two-stage strategy to incorporate contextual infor-
mation into sequential recommendation through self-supervised
methods such as mutual information maximization. CL4SRec [45]
uses three data augmentation methods suitable for sequential rec-
ommendation to generate positive samples for contrastive learning.
CoSeRec [28] improves CL4SRec by introducing robust data aug-
mentation methods. DuoRec [34] performs contrastive learning
from the model level by introducing supervised and unsupervised
objectives for contrastive learning. Different from these works, our
work devises contrastive learning methods based on the architec-
ture of bidirectional Transformers.

3 PRELIMINARIES
3.1 Problem Statement
In sequential recommendation, we denote U = {𝑢1, 𝑢2, · · · 𝑢 |U |}
as a set of users, V = {𝑣1, 𝑣2, · · · 𝑣 |V |} as a set of items, and
𝑠𝑢 = {𝑣 (𝑢)1 , 𝑣

(𝑢)
2 , · · · 𝑣 (𝑢)|𝑠𝑢 |} as an interaction sequence sorted in the

chronological order, where 𝑣 (𝑢)
𝑖

∈ V denotes the item that user 𝑢
has interacted with at the 𝑖-th timestamp. The task of sequential
recommendation is to predict the next item that user 𝑢 is probably
interested in, and it can be formulated as generating the probability
of all items for user 𝑢 at the next timestamp |𝑠𝑢 | + 1:

𝑝 (𝑣 (𝑢)|𝑠𝑢 |+1 = 𝑣 |𝑠𝑢 ) .

3.2 Bidirectional Transformers
The architecture of bidirectional Transformers incorporates a stack
of Transformer blocks. Each Transformer block consists of a multi-
head self-attention module and a feed-forward network. Multiple
Transformer blocks are stacked together as a deep network.

3.2.1 Multi-Head Self-Attention. Multi-head self-attention is effec-
tive to extract information from ℎ different subspaces at different
positions [9, 41]. Given the hidden representation H 𝑙 ∈ R𝑇×𝑑 for
the 𝑙-th layer with maximum sequence length 𝑇 and hidden dimen-
sionality 𝑑 , the computation is formulated as follows:

MH(H l ) = concat(head1; head2; · · · ; headh)WO,

head𝑖 = Attention(H lWQ
i ,H

lWK
i ,H

lWV
i ),

(1)

where WQ
𝑖

∈ R𝑑×𝑑/ℎ , WK
𝑖

∈ R𝑑×𝑑/ℎ , WV
𝑖

∈ R𝑑×𝑑/ℎ and WO ∈
R𝑑×𝑑 are learnable parameters. The attention mechanism is imple-
mented by scaled dot-product and softmax operation:

Attention(Q,K,V ) = softmax( QK
⊤√︁

d/h
)V, (2)

where Q,K,V stand for query, key, value respectively and
√︁
𝑑/ℎ is

a scale factor to avoid large values of the inner product.

3.2.2 Feed-Forward Network. Given that multi-head self-attention
is mainly based on linear projections, adding a feed-forward net-
work after the attention layer is conducive to capturing non-linear
features. It can be formulated as follows:

PFFN(H l) = [FFN(hl1)
⊤; FFN(hl2)

⊤; · · · ; FFN(hl|𝑠𝑢 |)
⊤],

FFN(hl𝑖 ) = GeLU(hl𝑖W1 + b1)W2 + b2,
(3)

where W1 ∈ R𝑑×4𝑑 ,W2 ∈ R4𝑑×𝑑 ,b1 ∈ R4𝑑and b2 ∈ R𝑑 are train-
able parameters shared across all positions.

3.2.3 Interlayer Stacking. Multiple Transformer blocks are stacked
together to construct a deep network. Mechanisms including resid-
ual connection [17], layer normalization [1] and dropout [38] are
introduced between layers to prevent overfitting. In summary, the
bidirectional Transformer encoder Trm can be defined as follows:

Trm(H 𝑙 ) = LayerNorm(F 𝑙 + Dropout(PFFN(F 𝑙 ))),

F 𝑙 = LayerNorm(H 𝑙 + Dropout(MH(H 𝑙 ))) .
(4)

4 PROPOSED FRAMEWORK
In this section, we introduce the architecture of our proposed frame-
work, Contrastive learning with Bidirectional Transformers for
sequential recommendation (CBiT) in detail. The architecture of
CBiT is illustrated in Figure 1. We first generate𝑚 different masked
sequences for each user sequence 𝑠𝑢 . An embedding layer converts
these masked sequences into embedding vectors. These embedding
vectors are forwarded through bidirectional Transformers and the
final outputs from the last layer are fetched as hidden representa-
tions. The cloze task is introduced as the main training objective,
which requires the model to reconstruct the masked items based on
the corresponding hidden representations of the masked items. The
hidden representations of all the masked sequence are viewed as a
collection of positive samples for multi-pair contrastive learning.
Dynamic loss reweighting strategy is introduced to balance the
main cloze task loss and the multi-pair contrastive loss.

4.1 Base Model
The base model of CBiT adopts an embedding layer and bidirec-
tional Transformers as sequence encoder to generate hidden rep-
resentations of sequences. A simple linear network is adopted as
the prediction layer to convert hidden representations of sequences
into the probability distribution of candidate items.

4.1.1 Embedding Layer. In CBiT, an item embedding matrix E ∈
RV×𝑑 and a positional embedding matrix P ∈ R𝑇×𝑑 are combined
together to construct hidden representations of sequences. Here𝑇 1

denotes the maximum sequence length of our model and 𝑑 denotes
the hidden dimensionality. Therefore, given an item 𝑣𝑖 , its input
representation can be denoted as follows:

h0𝑖 = e𝑖 + p𝑡 , 1≤𝑡≤𝑇 (5)

where e𝑖 ∈ E, p𝑡 ∈ P are the embedding vectors corresponding to
item 𝑣𝑖 and position 𝑡 , respectively.

Different from previous works, we resolve the restriction im-
posed from the maximum sequence length 𝑇 by sliding a window
1For any short sequence with length |𝑠𝑢 | < 𝑇 , we add 𝑇 − |𝑠𝑢 | padding token(s)
before it.
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Figure 1: The architecture of CBiT. User sequence 𝑠𝑢 goes
through random cloze task mask and generates 𝑚 differ-
ent masked sequences. After passing through the embed-
ding layer, eachmasked sequence is then forwarded through
bidirectional Transformers with different random dropout
masks. The masked items are used for the cloze task while
the hidden representations of the whole sequence are used
for contrastive learning. 𝑯 1

𝑢 ,𝑯
2
𝑢 , · · · ,𝑯𝑚

𝑢 are all considered
positive samples stemming from the same sequence 𝑠𝑢 . Dy-
namic loss reweighting strategy is adopted to balance the
cloze task loss and the multi-pair contrastive loss.

of size 𝑇 over any long sequence 𝑠𝑢 with length |𝑠𝑢 | > 𝑇 . With this
slide window technique, we can preserve all the training data as
well as divide sequences at a more fine-grained level.

4.1.2 Sequence Encoder. After passing through the embedding
layer, we stack h0𝑖 together into matrix H 0 ∈ R𝑇×𝑑 as the hidden
representation of the whole sequence. Supposing we have H 0 =

[h01,h
0
2, · · · ,h

0
𝑇
], we forward H 0 through 𝐿 layers of bidirectional

Transformer blocks, and the procedure is defined as follows:

H 𝑙 = Trm(H 𝑙−1), ∀ 𝑙 ∈ [1, · · · , 𝐿] . (6)

The output of the hidden representation H𝐿 = [h𝐿1 ,h
𝐿
2 , · · · ,h

𝐿
𝑇
]

from the last layer 𝐿 is fetched as the final output of bidirectional
Transformer encoder. For simplicity we will omit the superscript 𝐿
and use H = [h1,h2, · · · ,h𝑇 ] to denote the final output of bidirec-
tional Transformer encoder in the following passage.

4.1.3 Prediction Layer. Given the final output of any hidden repre-
sentation h𝑡 at position 𝑡 , we adopt a simple linear layer to convert

h𝑡 into probability distribution over candidate items:

𝑃 (𝑣) = W𝑃h𝑡 + b𝑃 , (7)

where W𝑃 ∈ R |V |×𝑑 is the weight matrix and b𝑃 ∈ R |V | is the
bias term for the prediction layer.

We adopt a simple linear layer rather than a feed-forward net-
work with item embedding matrix [39] because in practise we find
out that a prediction layer with a shared item embeddingmatrix will
interfere with the contrastive learning task, which heavily relies
on the shared item embedding matrix to calculate item similarity.
Apart from saving computational cost, a prediction layer without
an item embedding matrix also decouples the dependency between
the cloze task and the contrastive learning task.

4.2 Learning with The Cloze Task
To train bidirectional Transformers, the cloze task is introduced. For
each iteration step, given sequence 𝑠𝑢 , we generate𝑚 masked se-
quences 𝑠1𝑢 , 𝑠2𝑢 , · · · , 𝑠𝑚𝑢 using different random seeds. In eachmasked
sequence 𝑠 𝑗𝑢 (1≤ 𝑗≤𝑚), a proportion 𝜌 of all items in the sequence
𝑠𝑢 are randomly replaced with the mask token [mask], and the
position indices of the masked items are denoted as I 𝑗

𝑢 . The model
is required to reconstruct the masked items. The loss function for
the cloze task as the main training objective is defined as follows:

Lmain = −
𝑚∑︁
𝑗=1

∑︁
𝑡 ∈I 𝑗

𝑢

log𝜎 (𝑃 (𝑣𝑡 |𝑠 𝑗𝑢 )) +
∑︁
𝑣−𝑡 ∉𝑠𝑢

log 1 − 𝜎 (𝑃 (𝑣−𝑡 |𝑠
𝑗
𝑢 ))

 ,
(8)

where 𝜎 is the sigmoid function, and the probability 𝑃 (·) is defined
as Equation 7. Each ground-truth item 𝑣𝑡 is paired with one negative
item 𝑣−𝑡 that is randomly sampled. Note that we only consider the
masked items when calculating the loss function for the cloze task.

4.3 Multi-Pair Contrastive Learning
4.3.1 The Simple One-Pair Instance. Contrastive learning aims to
bring positive samples close to each other while pushing negative
samples apart from positive samples. Normally, given a batch of se-
quences {𝑠𝑢 }𝑁𝑢=1 with batch size 𝑁 , a pair of hidden representations
𝑯𝑥
𝑢 , 𝑯

𝑦
𝑢 stemming from the same original sequence 𝑠𝑢 are brought

together as a pair of positive samples2 while the other 2(𝑁 − 1)
hidden representations from the same batch are considered nega-
tive samples [4]. The contrastive learning loss for one pair based
on InfoNCE [31] can be defined as follows:

ℓ (𝑯𝑥
𝑢 ,𝑯

𝑦
𝑢 ) = − log

e<𝑯
𝑥
𝑢 ,𝑯

𝑦
𝑢>/𝜏

e<𝑯𝑥
𝑢 ,𝑯

𝑦
𝑢>/𝜏 +∑𝑁

𝑘=1,𝑘≠𝑢
∑
𝑐∈{𝑥,𝑦 } e

<𝑯𝑥
𝑢 ,𝑯

𝑐
𝑘
>/𝜏 ,

(9)
where 𝜏 is a temperature hyper-parameter. The cosine similarity
function < 𝝓1, 𝝓2 >= 𝝓1

⊤ · 𝝓2/| |𝝓1 | |·| |𝝓2 | | is adopted to calculate
the similarity between two hidden representations. In practice, we
find out that the cosine similarity function performs better than
the dot product similarity function.

2Here 𝑥 and 𝑦 denote the indices of two different masked sequences. 𝑥 and 𝑦 satisfy
1≤𝑥, 𝑦≤𝑚.
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4.3.2 Extrapolation. Simply using one pair of positive samples
for contrastive learning does not suffice to fully exploit the great
potential of bidirectional Transformers, because: a) the difference
between one pair of positive samples might be diminutive, so the
model could hardly learn anything useful with these easy positive
samples; b) there might exist false negative samples within one
batch, which could hurt performance if not neutralized with more
positive samples. Therefore, we extrapolate the standard contrastive
learning pair to multi-pair instances.

Recall that in the cloze task we generate𝑚 masked sequences
using different random seeds. Given the final output of the𝑚 hid-
den representations 𝑯 1

𝑢 ,𝑯
2
𝑢 , · · · ,𝑯𝑚

𝑢 corresponding to masked se-
quences 𝑠1𝑢 , 𝑠2𝑢 , · · · , 𝑠𝑚𝑢 , we combinatorially brought these hidden
representations together as positive samples. The multi-pair con-
trastive loss function for𝑚 positive samples is defined as follows:

Lcl =
𝑚∑︁
𝑥=1

𝑚∑︁
𝑦=1

𝟙[𝑥≠𝑦 ]ℓ (𝑯𝑥
𝑢 ,𝑯

𝑦
𝑢 ), (10)

where 𝟙[𝑥≠𝑦 ] ∈ {0, 1} is an indicator function evaluating to 1 iff
𝑥 ≠ 𝑦.

Multi-pair contrastive learning increases both the number of
positive samples and the number of negative samples. The total
number of positive samples is extended to𝑚 because we consider
the hidden representations of𝑚 masked sequences as positive sam-
ples. The total number of negative samples is extended to𝑚(𝑁 − 1)
because each positive sample brings the other (𝑁 −1) samples from
the same batch as negative samples.

Multi-pair contrastive learning answers the aforementioned fun-
damental issues: (1) How to choose an augmentation strategy for
contrastive learning? To generate 𝑯 1

𝑢 ,𝑯
2
𝑢 , · · · ,𝑯𝑚

𝑢 we need to for-
ward different masked sequences 𝑚 times through bidirectional
Transformers, and at each forward pass the random dropout mask
is different. That means each hidden representation is yielded from
both a unique cloze task mask and a unique dropout mask. Such
augmentation strategy implicitly utilizes the cloze task mask from
data level and the dropout mask from model level, maximizing the
difference between these positive samples. (2) How to construct rea-
sonable positive samples for contrastive learning? In fact, multi-pair
contrastive learning manages to construct reasonable positive sam-
ples through the additional self-supervision signal from the cloze
task. 𝑯 1

𝑢 ,𝑯
2
𝑢 , · · · ,𝑯𝑚

𝑢 all stem from the original sequence, and
the objective of the cloze task is to reconstruct the masked items.
Therefore, these positive samples should share semantic similarity.

4.4 Training and Inference
4.4.1 Overall Training Objective. Generally speaking, contrastive
learning methods for sequential recommendation jointly minimize
the main loss Lmain and the contrastive learning loss Lcl, which
can be denoted as follows:

Ljoint = Lmain + 𝜃Lcl, (11)

where 𝜃 is a weighting hyper-parameter.
In contrast with these methods, which employ a static propor-

tional hyper-parameter to indicate the significance of the con-
trastive learning loss, we design a simple yet effective strategy

Table 1: Comparison with other contrastive learning mod-
els.

CL4SRec CoSeRec DuoRec CBiT
Sequence Encoder Uni Uni Uni Bi
Handle Long Sequence Truncation Truncation Truncation Slide Window
Augmentation Data Data Model Hybrid
Representation for CL 𝑯𝑢 𝑯𝑢 𝒉

′
= 𝑯𝑢 [−1] 𝑯𝑢

Number of Positive Samples 2 2 4 Up to +∞
Loss Reweighting × × × ✓

𝜃 (𝛼, 𝜆) for contrastive learning loss reweighting as follows:

𝜃𝜎+1 = 𝛼𝜃 + (1 − 𝛼)𝜃𝜎 ,

𝜃 =
L𝜎+1main

L𝜎+1main + 𝜆L𝜎+1cl
,

(12)

where 𝛼 is a "learning rate" hyper-parameter for contrastive loss
proportion 𝜃 , 𝜆 is a rescaling factor which should be tuned for
different types of the contrastive loss function, and L𝜎+1main and
L𝜎+1cl denote the main cloze task loss and the contrastive learning
loss at the 𝜎 + 1-th iteration step, respectively. 𝜃 is set to 0 at first
and will be updated when the training process for each iteration
step is finished. We cut off the gradient of L𝜎+1main and L𝜎+1cl
when computing 𝜃𝜎+1, so it will not interfere with the standard
back propagation procedure. Therefore, the joint loss function for
our model at the 𝜎 + 1-th iteration step can be written as follows:

L𝜎+1joint = L𝜎+1main + 𝜃𝜎+1 (𝛼, 𝜆)L𝜎+1cl, (13)

4.4.2 Inference. At the inference stage, we append the mask token
[mask] to the end of the sequence so that the model will predict
the next item of this sequence:

𝑠
′
𝑢 = [𝑣 (𝑢)1 , 𝑣

(𝑢)
2 , · · · , 𝑣 (𝑢)|𝑠𝑢 |, [mask]] . (14)

The slide window technique is not needed at the inference stage.
For any long sequence we directly truncate it to the last 𝑇 items.

4.5 Comparison
We compare our model with other other contrastive learning frame-
works, including CL4SRec [45], CoSeRec [28] and DuoRec [34].
Differences are summarized in Table 1 and described as follows:

Sequence Encoder. A major difference is that CBiT adopts the
bidirectional Transformers as sequence encoder while other models
adopt the unidirectional Transformers as sequence encoders. Com-
pared with unidirectional Transformres, the attention mechanism
of bidirectional Transformers can capture behavioral patterns at a
more fine-grained level (section 5.5).

Handling Long Sequence. Another difference is that for long
user sequences, CBiT adopts the slide window technique while
other models use the standard truncation technique. The slide win-
dow technique is able to preserve all the data and also allows for a
more fine-grained division of user sequences (Section 5.4.1).

Augmentation. To perform contrastive learning, we need to
apply augmentations to the original sequence in order to generate
samples. Augmentations can be classified into two broad categories,
i.e., data augmentation and model augmentation. CL4SRec and
CoSeRec apply perturbations such as mask, reorder and substitu-
tion to the original sequence, which can be viewed as augmentations
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Table 2: Dataset statistics after preprocessing

Datasets #users #items #actions avg.length sparsity
Beauty 22,363 12,101 198,502 8.9 99.93%
Toys 19,412 11,924 167,597 8.6 99.95%

ML-1M 6,040 3,953 1,000,209 163.5 95.21%

from the data level. DuoRec applies perturbations such as unsuper-
vised dropout and supervised sampling, which can be viewed as
augmentations from the model level. In CBiT the cloze task mask
can be viewed as an implicit form of data augmentation and the
dropout mask is augmentation from the model level, so CBiT can be
viewed as a hybrid of data augmentation and model augmentation.

Representation for Contrastive Learning.Amore subtle dif-
ference lies in choices of the hidden representations for contrastive
learning. Most models employ the hidden representation of the
whole user sequence 𝑯𝑢 while only DuoRec adopts the hidden rep-
resentation of the last item 𝒉

′

= 𝑯𝑢 [−1] in the user sequence. The
former option focuses more on aligning the semantics of the whole
user sequence while the latter emphasizes more on the next-item
prediction task. It is hard to say which option is better depending
on different types of augmentations.

Number of Positive Samples. The normal contrastive learn-
ing method maximizes the agreement between a pair of positive
samples, which is the case in CL4SRec and CoSeRec. DuoRec pur-
sues two contrastive learning objectives from both supervised and
unsupervised perspective, so it has two pairs of positive samples.
CBiT extrapolates the normal contrastive learning to multi-pair
instances, so in theory it can handle infinite positive samples.

Loss Reweighting Strategy. A novel dynamic loss reweight-
ing strategy is introduced in CBiT to balance the main cloze task
loss and the contrastive learning loss. In practice, we find that
this strategy leads to smooth loss convergence and better model
performance (Section 5.4.3).

5 EXPERIMENT
In this section, we present the details of our experiments and answer
the following research questions (RQs):
• RQ1: How does CBiT perform comparing with other state-of-
the-art methods? (Section 5.2)

• RQ2: What are the influence of different hyper-parameters in
CBiT? (Section 5.3)

• RQ3: What are the effectiveness of various novel techniques in
CBiT? (Section 5.4)

• RQ4: Why can bidirectional Transformers outperform unidirec-
tional Transformers by a large margin? (Section 5.5)

5.1 Settings
5.1.1 Dataset. We conduct experiments on three public bench-
mark datasets. The Amazon dataset [30] contains users’ reviews
on products from different domains, which have relatively short
sequence lengths. We select two domains Beauty and Toys as two
different experimental datasets from the Amazon dataset. Another
dataset MovieLens-1M (ML-1M) [15] contains users’ ratings on
movies, which has very long sequences. All interactions are con-
sidered implicit feedbacks. We discard duplicated interactions and

sort each user’s interaction in the chronological order so as to con-
struct user sequences. Following [28, 34, 39], we omit users with
less than 5 interactions and items related with less than 5 users.
The leave-one-out evaluation strategy is adopted, holding out the
last item for test, the second-to-last for validation, and the rest for
training. The processed dataset statistics are presented in Table 2.

5.1.2 Metrics. For fair comparisons we rank the prediction on the
whole item set [23]. We report the score of top-𝐾 Hit Ratio (HR@𝐾 )
and Normalized Discounted Cumulative Gain (NDCG@𝐾 ).

5.1.3 Baselines. The following baselines are used for comparisons:
• GRU4Rec [20]. It introduces GRU with the ranking loss function
in session-based recommendation.

• Caser [40]. It applies CNNs from both horizontal and vertical per-
spective for personalized sequential recommendation. The slide
window technique is adopted according to the original paper.

• SASRec [21]. It uses unidirectional Transformers as sequence
encoder, which serves as the base model for contrastive learning
methods including CL4SRec, CoSeRec, and DuoRec.

• CL4SRec [45]. It is the first to apply contrastive learning to
sequential recommendation. Data augmentation is adopted to
generate positive samples.

• CoSeRec [28]. It further improves CL4SRec by introducing ro-
bust data augmentation methods.

• DuoRec [34]. It is a very strong baseline which mitigates the
representation degeneration problem in contrastive learning.

• BERT4Rec [39]. It uses bidirectional Transformer as sequence
encoder and adopts the cloze task to train the model.

• BERT4Rec𝑆 . For comparison, we apply the slide window tech-
nique to BERT4Rec, which is roughly equivalent to removing the
contrastive learning module of CBiT.

• CoSeBERT. We devise a variant of CoSeRec using BERT4Rec
as the sequence encoder. Contrastive learning is the same with
CoSeRec. The slide window technique is also adopted.

5.1.4 Implementation. For GRU4Rec, Caser, SASRec, CoSeRec, and
DuoRec, we use the codes provided by their authors. We implement
CL4SRec, BERT4Rec, BERT4RecS and CoSeBERT in PyTorch [32].
The number of Transformer blocks and the number of attention
heads are tuned from {1, 2, 4}. The dropout ratio is tuned from 0.1
to 0.9. For CL4SRec, CoSeRec and CoSeBERT, we tune the ratios for
different types of data augmentations from 0.1 to 0.9. We follow the
instructions from the original papers to set other hyper-parameters.

We also implement our method in PyTorch [32]. Both the number
of Transformer blocks 𝐿 and the number of attention heads ℎ are
set as 2, and the hidden dimension as well as the batch size are
set as 256. We set the mask proportion 𝜌 of the cloze task as 0.15,
which is recommended by the author of BERT [9]. We use the Adam
[22] optimizer with a learning rate of 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999,
and the learning rate will decay exponentially [29] after every 100
epochs. For other hyper-parameters, we tune dropout ratio from
0.1 to 0.9, rescaling factor 𝜆 from 1 to 9, 𝜏 from 0.1 to 6, the number
of positive samples𝑚 from 2 to 8, the slide window size 𝑇 from 10
to 100, and 𝛼 within {0.0001, 0.0005, 0.001, 0.05, 0.1}. We train our
model for 250 epochs and select the checkpoint which displays the
best NDCG@10 score on the validation set for test.
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Table 3: Overall performance of different methods on next-item prediction. The best score and the second best score in each
row are bolded and underlined, respectively. Improvements over the best baseline method are indicated in the last column.

Dataset Metric GRU4Rec Caser SASRec CL4SRec CoSeRec DuoRec BERT4Rec BERT4RecS CoSeBERT CBiT Improv.

Beauty

HR@5 0.0206 0.0254 0.0371 0.0396 0.0504 0.0559 0.0370 0.0513 0.0546 0.0637 13.95%
HR@10 0.0332 0.0436 0.0592 0.0630 0.0726 0.0867 0.0598 0.0755 0.0786 0.0905 4.38%
HR@20 0.0526 0.0682 0.0893 0.0965 0.1035 0.1102 0.0935 0.1068 0.1093 0.1223 10.98%
NDCG@5 0.0139 0.0154 0.0233 0.0232 0.0339 0.0331 0.0233 0.0353 0.0378 0.0451 19.31%
NDCG@10 0.0175 0.0212 0.0284 0.0307 0.0410 0.0430 0.0306 0.0431 0.0462 0.0537 16.23%
NDCG@20 0.0221 0.0274 0.0361 0.0392 0.0488 0.0524 0.0391 0.0510 0.0529 0.0617 16.64%

Toys

HR@5 0.0121 0.0205 0.0429 0.0503 0.0533 0.0539 0.0371 0.0520 0.0542 0.0640 18.08%
HR@10 0.0184 0.0333 0.0652 0.0736 0.0755 0.0744 0.0524 0.0761 0.0735 0.0865 13.67%
HR@20 0.0290 0.0542 0.0957 0.0990 0.1037 0.1008 0.0760 0.1040 0.1019 0.1167 12.21%
NDCG@5 0.0077 0.0125 0.0248 0.0264 0.0370 0.0340 0.0259 0.0366 0.0355 0.0462 24.86%
NDCG@10 0.0097 0.0168 0.0320 0.0339 0.0442 0.0406 0.0309 0.0442 0.0434 0.0535 21.04%
NDCG@20 0.0123 0.0221 0.0397 0.0404 0.0513 0.0472 0.0368 0.0521 0.0506 0.0610 17.08%

ML-1M

HR@5 0.0806 0.0912 0.1078 0.1142 0.1128 0.1930 0.1308 0.1800 0.1653 0.2095 8.55%
HR@10 0.1344 0.1442 0.1810 0.1815 0.1861 0.2865 0.2219 0.2594 0.2492 0.3013 5.17%
HR@20 0.2081 0.2228 0.2745 0.2818 0.2950 0.3901 0.3354 0.3623 0.3463 0.3998 2.49%
NDCG@5 0.0475 0.0565 0.0681 0.0705 0.0692 0.1327 0.0804 0.1215 0.1156 0.1436 8.21%
NDCG@10 0.0649 0.0734 0.0918 0.0920 0.0915 0.1586 0.1097 0.1471 0.1412 0.1694 6.81%
NDCG@20 0.0834 0.0931 0.1156 0.1170 0.1247 0.1843 0.1384 0.1729 0.1658 0.1957 6.19%

5.2 Overall Performance Comparisons
Table 3 presents the overall performance of our model and other
baselines on the three public benchmark datasets.

For comparisons of base sequence encoders, bidirectional Trans-
formers with the slide window technique (e.g. BERT4RecS) outper-
forms models with other types of sequence encoders such as RNN
(e.g. GRU4Rec), CNN (e.g. Caser) and unidirectional Transformers
(e.g. SASRec) by a large margin. However, bidirectional Transform-
ers with the normal truncation technique (e.g. BERT4Rec) performs
similarly with its unidirectional counterpart (e.g. SASRec).

For comparisons of contrastive learning methods, models based
on model augmentation (e.g. DuoRec) or hybrid augmentation (e.g.
CBiT) outperform models based on data augmentation methods
(e.g. CL4SRec, CoSeRec and CoSeBERT). We conjecture that data
augmentation might corrupt the original semantics of sequences,
and it also collides with the cloze task in bidirectional Transformers.

The performance improvement of our model can be attributed
to two parts, i.e., the gain from the slide window technique and the
gain from multi-pair contrastive learning. Our model also demon-
strates a good adaptability and achieve the best performance on
both short-sequence datasets and long-sequence datasets.

5.3 Hyper-parameter Sensitivity
In this section, we study the influence of four important hyper-
parameters in CBiT, including the number of positive samples𝑚,
the dropout ratio, temperature 𝜏 , and the slide window size 𝑇 . To
control variables we only change one hyper-parameter at one time
while keeping others optimal.

5.3.1 Number of Positive Samples. The number of positive samples
𝑚 regulates how many positive samples are available for multiple-
pair contrastive learning. Figure 2a shows that increasing the num-
ber of positive samples can improve performance. Contrastive learn-
ing with multiple positive samples performs better than the simple

contrastive learning with a pair of positive samples. This phenome-
non can be attributed to the variety of semantic patterns brought
about by multiple positive samples. However, the effectiveness of
multiple positive samples also has an upper limit. When there are
sufficient positive samples, performance reaches a plateau even if
we add more positive samples.

5.3.2 Dropout Ratio. On the one hand, the dropout ratio should
not be too large so as to avoid corrupting the original semantics of
sequences. On the other hand, we hope to adopt a larger dropout
ratio so as to generate harder samples for the contrastive learning
task. Therefore, we have to strike a balance when choosing the
optimal dropout ratio. As we can see in Figure 2b, CBiT is unable
to reach its best performance when the dropout ratio is 0.1. A large
dropout ratio such as 0.9 also significantly cuts down performance.
The optimal dropout ratio should be somewhere in between, which
is 0.3 for Beauty and Toys, 0.2 for ML-1M in CBiT.

5.3.3 Temperature. Temperature 𝜏 regulates how much we should
penalize for hard negative samples [42]. A small 𝜏 leads to an ex-
cessive pursuit of uniformity [43], which may break underlying
semantic similarity, while a large 𝜏 makes the contrastive loss func-
tion too soft to discriminate between samples. From Figure 2c we
can see that a good choice of temperature should neither be too
large nor too small, which is 0.3 in our model.

5.3.4 Slide Window Size. It is very important to choose an appro-
priate slide window size because the slide window size depends
the maximum sequence length of our model. Comparing with the
average length of training dataset, an appropriate slide window size
𝑇 for the model should not be too large, because: a) only recent
interactions play a significant role in indicating user’s intent while
outdated interactions are less helpful; b) a large value 𝑇 results in
too much padding, which will inevitably hurt performance.

Besides, using a smaller slide window size can also improve
efficiency. The time complexity of CBiT for each layer is O(𝑇 2𝑑).
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Figure 2: Performance (NDCG@10) comparison w.r.t different hyper-parameters on three datasets.

Table 4: Analysis on the effectiveness of the slide window
technique (denoted as S). Note that Caser already adopts the
slide window technique according to the original paper.

Model Beauty Toys ML-1M

HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

GRU4Rec 0.0332 0.0175 0.0184 0.0097 0.1344 0.0649
GRU4RecS 0.0237 0.0113 0.0101 0.0052 0.0990 0.0438

Caser 0.0436 0.0212 0.0333 0.0168 0.1442 0.0734

SASRec 0.0592 0.0284 0.0652 0.0320 0.1810 0.0918
SASRecS 0.0585 0.0278 0.0694 0.0339 0.1727 0.0845

BERT4Rec 0.0598 0.0306 0.0524 0.0309 0.2219 0.1097
BERT4RecS 0.0755 0.0431 0.0761 0.0442 0.2594 0.1471

By reducing 𝑇 to the near average sequence length of each dataset,
we can greatly save computational cost.

From Figure 2d we can see that the optimal slide window size is
15 for Beauty, 20 for Toys, and 40 for ML-1M respectively. Datasets
with shorter sequences favour a shorter slide window size whereas
datasets with longer sequences favour a slightly longer sequence
length. And even on ML-1M the optimal slide window size is not
160 but 40 because only recent interactions are more helpful when
predicting the near future.

It has to be pointed out that using a shorter slide window size
does not mean that outdated interactions should be considered as
noise. Although they may not be helpful in predicting the future if
users’ current interests have shifted, we still need them in the train-
ing data because they give us insights into how users’ behavioral
patterns change dynamically. For instance, user A may be inter-
ested in items from group A in the past, but now his or her interest
has shifted to items from group B. When predicting the future for
user A, considering interactions from group A may not be helpful
because of interest shift. However, if another user B happens to
show interest in items from group A, then we can use information
learned from user A to predict the future for user B.

5.4 Ablation Study
In this section, we perform ablation study on the slide window
technique, the augmentation strategy and the loss reweighting
strategy of CBiT to understand their effectiveness.

    Beauty    Toys     ML-1M
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Figure 3: Ablation study (NDCG@10) w.r.t to the augmenta-
tion strategy and the loss reweighting strategy.

5.4.1 Slide Window Technique. To study its effectiveness, we use
the slide window technique on different types of base sequence
encoders and examine their performance. We tune the slide window
size for each model and report the best performance in Table 4. We
can see that no other types of sequence encoders achieves such a re-
markable performance improvement as bidirectional Transformers
with the introduction of the slide window technique.

We attribute this phenomenon to the agility of the bidirectional
attention mechanism in bidirectional Transformers. The attention
mechanism in bidirectional Transformers can attend on items from
both sides, which is beneficial for capture more personalized, fine-
grained and nuanced behavioral patterns. Therefore, we can reduce
the slide window size to a relatively small value, which means we
divide a long sequence into a few sub-sequences where each sub-
sequence displays slightly different behavioral patterns. By feeding
these sub-sequences into our model, bidirectional Transformers
can capture more fine-grained features. This phenomenon can also
be affirmed from the observation in Figure 2d that using a large
slide window size undermines performance, which means that
bidirectional Transformers have not yet fully capture more fine-
grained behavioral patterns when long sequences have not been
broken into sub-sequences.

By comparison, other sequence encoders cannot capture behav-
ioral patterns at a more fine-grained level. So it does not make much
difference even if we break sequences into sub-sequences.
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5.4.2 Augmentation Strategy. Our model uses both the cloze task
mask and the dropout mask as a hybrid augmentation strategy. To
study the effectiveness of these two augmentations separately, we
conduct ablation experiments on our augmentation strategy, where
we only modify our augmentation strategy while keeping other
hyperparameters optimal. From Figure 3a we can see that enabling
contrastive learning is better than no contrastive learning at all,
and neither using the cloze task mask nor the dropout mask alone
can achieve performances comparable with our hybrid strategy.

We explain the good performance of the hybrid approach from
two perspectives: a) a hybrid of these two mask mechanisms brings
more perturbation to the original sequence, so the samples for con-
trastive learning can be harder and of better quality; b) compared
with other data augmentation methods, these two mask mecha-
nisms inherent in the original BERT architecture are more compati-
ble with bidirectional Transformers, so the perturbation from these
two mask mechanisms will not break semantic similarity.

5.4.3 Loss Reweighting Strategy. In our experiments, we observe
that the contrastive learning loss may be very large at the inception
of the training phase. It takes more time for the model to converge
with a large contrastive learning loss. However, simply setting the
weighting hyper-parameter 𝜃 to a small value cannot solve the
problem, because in the latter stage the contrastive learning loss
may become too small for themodel to focus on contrastive learning.
Therefore, we design the dynamic loss reweighting strategy, which
automatically reweights the contrastive learning loss.

The ablation study of the loss reweighting strategy is presented
in Figure 3b, where we use different weighting strategies and save
the checkpoints from every epoch during training and test them on
the Beauty dataset. We can see that using dynamic loss reweighting
strategy in CBiT can improve performance and displays a smoother
training curve. Setting neither the proportion 𝜃 of contrastive learn-
ing loss to a small value 0.1 nor to a large value 0.5 can achieve
comparable effectiveness.

5.5 Discussion: Why Bidirectional
Transformers?

The main difference between unidirectional Transformers and bidi-
rectional Transformers is whether self-attention can see future
items in the current sequence. Unidirectional Transformers use the
attention mask to hide future items, which creates a shifted version
of the same sequence [21]. By comparisons, bidirectional Trans-
formers have access to all the items within sequences, so it can see
items from both sides [39]. As we can see in Figure 4, for unidirec-
tional Transformers the heat-map of average attention weights is
diagonal because of such causality attention masking. This restricts
its ability to consider subsequent context information because it can
only see items from the left side. However, bidirectional Transform-
ers can see items from both sides, which is beneficial for capturing
more fine-grained behaviorial patterns.

The difference in the attention mechanisms leads to different
training objectives. For unidirectional Transformers, the training ob-
jective is next-item prediction because the model learns to process
sequence information from left to right. For bidirectional Trans-
formers, the training objective is the cloze task using an additional
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Figure 4: Average attention weights of SASRec and CBiT on
the ML-1M dataset at different layers. In CBiT the last posi-
tion represents the mask token. For simplicity, we only plot
the average attention weights of the 2nd heads.

mask token because the model learns to process sequence informa-
tion from both sides. As we can see in Figure 4c and 4d, attention
in the 2-th head tends to attend on the mask token, which indicates
that the model is sensitive to the cloze task.

Theoretically, bidirectional Transformers should perform better
than unidirectional Transformers because of the difference in the
attention mechanism. However, in our experiments we find out
that bidirectional Transformers can only outperform unidirectional
Transformers by a large margin on condition that the slide window
technique is adopted, which indicates the necessity of using the
slide window technique in bidirectional Transformers.

6 CONCLUSION
In this work, we proposed a novel framework called Contrastive
learning with Bidirectional Transformers for sequential recom-
mendation (CBiT). We utilized both the cloze task mask and the
dropout mask to generate multiple positive samples and extrapolate
the normal one-pair contrastive learning to multi-pair instances.
To smooth multi-pair contrastive loss, we designed a novel dy-
namic loss reweighting strategy. The slide window technique is
also adopted to divide sequences from a more fine-grained level. Ex-
perimental results on the three public benchmark datasets showed
that our approach outperforms several state-of-the-art methods
and provides an insight into how and why our approach works.
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